Intrinsic voltage dynamics govern the diversity of spontaneous firing profiles in basal forebrain noncholinergic neurons.
نویسندگان
چکیده
Spontaneous firing and behavior-related changes in discharge profiles of basal forebrain (BF) neurons are well documented, albeit the mechanisms underlying the variety of activity modes and intermodal transitions remain elusive. With the use of cell-attached recordings, this study identifies a range of spiking patterns in diagonal band Broca (DBB) noncholinergic cells of rats and tentatively categorizes them into low-rate random, tonic, and cluster firing activities. It demonstrates further that the multiplicity of discharge profiles is sustained intrinsically and persists after blockade of glutamate-, glycine/GABA-, and cholinergic synaptic inputs. Stimulation of muscarinic receptors, blockade of voltage-gated Ca(2+)-, and small conductance (SK) Ca(2+)-activated K(+) currents as well as chelating of intracellular Ca(2+) concentration accelerate low-rate random and tonic firing and favor transition of neurons into cluster firing mode. A similar trend towards higher discharge rates with switch of neurons into cluster firing has been revealed by activation of neuropeptide Y (NPY) receptors with the NPY or NPY(1) receptor agonist [Leu(31),Pro(34)]-NPY. Whole cell current-clamp analysis demonstrates that the variety of spiking modes and intermodal transitions could be induced within the same neuronal population by injection of bias depolarizing or hyperpolarizing currents. Taken together, these data demonstrate the intrinsic and highly variable character of regenerative firing in BF noncholinergic cells, subject to powerful modulation by classical neurotransmitters, NPY, and small membrane currents.
منابع مشابه
Profiles in Basal Forebrain Non-cholinergic Neurons
2 Intrinsic Voltage Dynamics Govern the Diversity of Spontaneous Firing 3 Profiles in Basal Forebrain Non-cholinergic Neurons 4 5 6 Saak V. Ovsepian, Oliver J. Dolly and Laszlo Zaborszky 7 8 (1) Centre for Molecular and Behavioral Neuroscience, Rutgers, The State University of 9 New Jersey, 197 University Avenue, Newark, NJ 07102, USA; (2) International Centre 10 for Neurotherapeutics, Research...
متن کاملMorphological and electrophysiological characteristics of noncholinergic basal forebrain neurons.
Cholinergic neurons in the basal forebrain are the focus of considerable interest because they are severely affected in Alzheimer's disease. However, both cholinergic and noncholinergic neurons are intermingled in this region. The goal of the present study was to characterize the morphology and in vivo electrophysiology of noncholinergic basal forebrain neurons. Neurons in the ventral pallidum ...
متن کاملEEG correlation of the discharge properties of identified neurons in the basal forebrain.
The basal forebrain (BF) is a heterogeneous structure located in the ventral aspect of the cerebral hemispheres. It contains cholinergic as well as different types of noncholinergic corticopetal neurons and interneurons, including GABAergic and peptidergic cells. The BF constitutes an extrathalamic route to the cortex, and its activity is associated with an increase in cortical release of the n...
متن کاملElectrophysiological properties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices.
The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiol...
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2012